
SpotiBot—Turing Testing Spotify

Prof. Pelle Snickars
Department of Culture and Media Studies / Humlab
Umeå University
pelle.snickars@umu.se

In mid May 1951, Alan Turing gave one of his few talks on

BBC’s Third Programme. The recorded lecture was entitled,

“Can Digital Computers Think?” By the time of the now lost

broadcast, a year had passed since the publication of Turing’s

(now) famous Mind-article, “Computing Machinery and

Intelligence”, with its thought provoking imitation game.

Computers of his day, in short, could not really think and

therefore not be called brains, Turing argued in his lecture.

But, digital computers had the potential to think and hence in

the future be regarded as brains. “I think it is probable for

instance that at the end of the century it will be possible to

programme a machine to answer questions in such a way that

it will be extremely difficult to guess whether the answers are

being given by a man or by the machine”, Turing said. He was

imagining something like “a viva-voce examination, but with

the questions and answers all typewritten in order that we

need not consider such irrelevant matters as the faithfulness

with which the human voice can be imitated.”

The irony is that Alan Turing’s own voice is lost to history;

there are no known preserved recordings of him. The written

 1

manuscript of his BBC lecture can be found at the collection

of Turing papers held at King’s College in Cambridge—partly

available online. As Alan Jones has made clear, Turing’s radio

lecture was part of a series the BBC had commissioned under

the title “Automatic Calculating Machines”. In five broadcasts

during spring 1951, an equal number of British pioneers of

computing spoke about their work. Then again, Jones was

only able to examine surviving texts of these broadcasts.

Consequently, there is no way to scrutinze or explore Turing’s

oral way of presenting his arguments. His intonation, pitch,

modulation etcetera are all lost, and we cannot conceive the

way Turing actually spoke.

My point to be made is that audiovisual sources from the past

often tend to be regarded as textual accounts. By and large

audiovisual sources have also been used by historians to a way

lesser degree than classical (textual) documents. Sometimes—

as the case with Turing—archival neglect is the reason, but

more often humanistic research traditions stipulate what kind

of source material to use. In many ways, however, the same

goes within the digital humanities. Even if digitized and born-

digital audiovisual material today amounts to a steadily

increasing body of data to research (and do research with), it

is still relatively poorly represented in the field of DH. As is

well known, the focus on the modality of text is (and has

remained) strong. Textual scholarship has been the discipline’s

 2

core concern—from Busa’s concordances, computational

linguistics and the automatic analysis of vast textual corpora,

to various text encoding initiatives (such as TEI) and distant

reading.

As of lately, however, there seems to be an increased scholarly

DH-interest in the media modality of sound—and a search

for ”sound” or ”music” in this conference programme seems

to suggest an expanded attention within DH. My

presentation is perhaps then part of a contemporary trend of

including a greater variety of media modalities within DH-

research. Be that as it may; my purpose here is to provide

some initial findings from an ongoing research project that

deals with various experiments, interventions and the reverse

engineering of Spotify’s algorithms, aggregation procedures,

and valuation strategies. The key idea of this research project

is to ‘follow music files’—rather than the people making,

using, collecting or listening to them—on their distributive

journey through the Spotify streaming ecosystem. Building on

the tradition of “breaching experiments” in ethno-

methodology, our project tries to break into the hidden

infrastructures of digital music distribution in order to study

its underlying norms and structures. The interventionist

approach in many ways resembles the simple way a postman

would follow the route of a parcel—from packaging to

delivery. The setting for studying such processes include the

 3

distribution and aggregation of self-produced music/sounds

through Spotify, ‘monetary interventions’ with calculated

musical tinkering, the documentation and tracing of Spotify’s

history through constantly changing interfaces—and

importantly, the programming of multiple bots to act as

research informants.

In essence, a substantial part of our Spotify project has been

about fine tuning the both highly influential and widely

criticized classical Turing test. By focusing on the deceptive

qualities of technology—particularly regarding the difference

between man and machine—a number of the notions

proposed in Turing’s essay “Computing machinery and

intelligence” have never really lost their relevance. Basically,

the so called SpotiBot experiments we have conducted

resemble a repetitive Turing test—i.e. our bots interact with

the Spotify system, which tries to decide (via various

unknown fraud detection tools) if the interaction is human or

machine based. Consequently, we have asked ourselves what

happens when (not if) streaming bots approximate human

listener behavior in such a way that it becomes impossible to

distinguish between them. Streaming fraud, as it has

sometimes been labeled, then runs the risk of undermining

the economic revenue models of music streaming services as

Spotify.

 4

The imitation game, Turing once stated in his 1950 essay, “is

played with three people, a man (A), a woman (B), and an

interrogator (C)”. The object of the game was for the

interrogator to determine “which of the other two is the man

and which is the woman”. Already at the beginning of his

essay, Turing however, asked what would happen if “a

machine takes the part of A in this game?” As N. Kathryn

Hayles famously put it, gender hence appeared at the “primal

scene” of humans meeting with their potential evolutionary

successors, the machines. Still, following her interpretation of

Turing, the ‘gender’, ‘human’ and ‘machine’ examples were

basically meant to prove the same thing. Aware that one of the

two participants (separated from one another) was a machine,

the human evaluator would simply judge natural language

conversation (limited to a text-only channel) between a

human and a machine—designed to generate human-like

responses. If the evaluator could not reliably tell the machine

from human—the machine was said to have passed the test. It

might then be termed artificially intelligent.

Towards the end of Turing’s article, the initial question, “Can

machines think?” was consequently replaced by another: “Are

there imaginable digital computers which would do well in

the imitation game?” Naturally, Turing thought so—and only

15 years later, the computer scientist Joseph Weizenbaum

programmed what is often regarded as the first bot, ELIZA.

 5

She (the bot) had two distinguishing features that usually

characterize bots: intended functions that the programmer

built, and a partial function of algorithms and machine

learning abilities responding to input. ELIZA, Weizenbaum

stated, “appeared capable of understanding what was said to

[her] and responding intelligently, but in truth [she] simply

followed a pattern matching routine that relied on only

understanding a few keywords in each sentence.” ELIZA was

hence a mock psychotherapist—and the element of artifice

programmed into her again testifies to the deceptive qualities

of technology which the Turing test underlined. In fact, ever

since, fraudulence (in one form or the other) seems to be a

distinguished part of an evolving bot culture constantly

capitalising on advancements in artificial intelligence. Bots

appear to be human—which is why they are interesting.

k

Now, established in Sweden in 2006, Spotify is today the

dominant player in the streaming music market. With more

than 75 million global listeners, and 30 million monthly

paying subscribers, Spotify has emerged as the giant within

the streaming music business. Even outcompeting Apple

Music, Spotify’s market share currently lies above 40 percent.

One success factor is arguably the ease by which a listening

account can be set up at Spotify. It is, in short, extremely

 6

simple to sign in—both for humans and bots. No CAPTCHA

is for example needed, and obviously, one should in this

context remember what the CAPTCHA abbreviation

originally stands for: “Completely Automated Public Turing

test to tell Computers and Humans Apart”. As is well known,

a CAPTCHA is a program that protects websites against bots

by generating a simple test that humans can pass but

computer programs cannot. Since no CAPTCHA is needed,

scripted bot users can easily be programmed to register, and

within our research project we have used and deployed

multiple bots to study the explicit and implicit logics of the

Spotify web client. We have even been able to automate

account registration (for fast bot setups). Departing from the

idea that software is normative and regulatory—and, hence,

that the streaming architecture of Spotify promotes and

materializes certain world views (and not others)—our bots

have been programmed to explore the socio-technical

protocols that endow music files with cultural meaning.

One major research issue we have struggled with, is the type

of knowledge that can be gained (and gleaned) from working

with bots as informants. Are they to be trusted? Can they

produce valid empirical data? We do think so. Yet, as a kind of

virtual informants our bots do not interactively and explicitly

collect information, rather they are designed and set up to

acquire and log certain data via the ‘actions’ and different

 7

functions they are programmed to perform. Nearly all of our

bots have been Spotify ‘freemium users’. The setup has

involved a few similar steps; firstly, bots are named, and each

given certain specified (or random) characteristics (age,

nationality, gender etcetera). Secondly, the bots—in the form

of virtual users—are programmed to do specific tasks and

hence act as research informants within the Spotify web client.

Within our research project these have varied depending on

what scholarly issues or tasks we have been interested in.

Essentially, the bots we have programmed are scripted

algorithms that exhibit human-like behavior (in one way or

the other) when ‘listening’ to music. Implemented in the

Python programming language, and using a web UI testing

frameworks, our SpotiBot engine has been able to automate

the Spotify web client by simulating user interaction within

the web interface. In the implementation to conduct

experiments with the Spotify web client we have used a system

framework originally designed for automated tests of web

pages. Normally its purpose has been to validate correct

behaviour of software. Consequently, our bots have been

designed to program user activities and—importantly—log

and record output of these. Initially, our research project

designed and developed a rudimentary virtual machine (or

run time engine) with the capability to execute about 15 high

level machine instructions such as “register_account”, “login”,

 8

“logout”, “play_media” and “follow_artist”. The selected

instruction set corresponded to the most common user

interactions (in a web interface), and the set also included

primitives for data capture (screenshots, playlists, video), as

well as loops and conditional execution. Finally, the virtual

machine has used the popular Web testing framework,

Selenium for access and control of various web browsers.

Now, one of the major contemporary controversies regarding

the transition to streaming music platforms involves payouts

to artists. The sometimes heated discussion has, in short, been

centered around the issue if streaming music will be able to

generate a sustainable income for musicians—or not. Within

the music industry this has led to considerable debate; Taylor

Swift decided to remove her entire back catalogue from

Spotify, Adele rejected streaming her new album etcetera, and

lesser known artists have experimented with different music-

hacks or pranks. These have ranged from the funk band

Vulfpeck, and their conceptual album, “Sleepify”—containing

five minutes and 16 seconds of pure silence; asking fans to

stream the album on repeat (while sleeping)—to hacks by the

band Ohm & Sport and their application Eternify, were for a

(very) short time one could enter the name of a favorite artist

and play songs on repeat for economic support in 31-second

intervals.

k

 9

At Humlab we therefore set up an experiment—the SpotiBot

—with the purpose to determine if it was possible to provoke,

or to some extent undermine, the Spotify business model in a

similar manner. Royalties from Spotify are usually disbursed

to artists (or more precisely, record labels) once a song or track

is registered as a play, which happens after 30 seconds. The

SpotiBot engine—with the ability to run a multiple of pre-

programmed user bots—was hence instructed to play a single

track repeatedly for more and less than 30 seconds, and

sometimes simultaneously with different accounts. Tracks

consisted both of self-produced music (from our research

project; the artist Fru Kost with the song “Avplock”) and

Abba’s “Dancing Queen”. The fixed repetition scheme ran

from 100 to n times. Basically, the SpotiBot engine was

programmed to stick to this schedule—with three testing

rounds—resulting in quite noisy computation!

From a computational perspective the Spotify web client

appeared as a black box; the logics that the Spotify application

was governed by was, for example, not known in advance, and

the web page structure (in HTML) and client side scripting

quite complex. It was not doable within the experiment to

gain a fuller understanding of the dialogue between the client

and the server. In addition, since our bot experiments violated

(some of) Spotify’s user agreements, a VPN connection was

 10

used that hid the running clients behind a public proxy IP

outside of the university network.

This chart gives a graphic estimation of some results from our

experiments: the SpotiBot engine was able to play Fru Kost’s

track, repeatedly for 25 and 35 seconds. The bot “selenium57”

for example played the track 229 times, and the

“selenium_bot” as many as 1,141 times repeatedly—that is,

after 35 seconds of “Avplock”, the bot started the song again,

and again, and again. Similarly, in the second experiment,

“selenium_bot37” was able to repeatedly play Abba’s

“Dancing Queen” for 35 seconds, at repeated intervals of 16

times, 208, 30, 1,141, 19, 20 times etcetera.

Apart from the possibility of actually being able to

automatically (and repeatedly) play tracks on Spotify via bots,

one preliminary result indicate that there was no major

difference between our bots playing artist like Fru Kost or

Abba for 25 or 35 seconds. For the Spotify system both artist

were simply content. Our hypothesis was that playing tracks

repeatedly for 25 seconds would (at least in theory) not be a

problem, since such plays are not regarded as a registered play

by the Spotify system. This was also true, as is evident in this

chart. On one occasion the bot “selenium51” (to the left)

played Abba 550 repeated times for 25 seconds. Then again,

we did not discover any statistical difference if the same songs

 11

were played repeatedly during 35 seconds—even if they were

then registered as a play (and subsequent royalties were

registered). A second preliminary result was also that our third

experiment (using a large number of parallel bots to play

Abba’s “Dancing Queen”) could not be executed on available

hardware since it would have required investment in a lot of

new machines. In a lighter setup, however, we used more than

20 bots running in parallel on two computers (virtual

machines) each interacting with a Spotify web client,

repeatedly playing the same Abba track hundreds of times—

and the presented chart gives a graphic estimation of some of

the results.

In theory—and if we had the financial abilities—we

definitively believe it would be possible to perform a massive

‘bot setup’ with hundreds of clients running in parallel on a

larger number of (possibly cloud based) servers. Our simple

experiments, in fact, indicates the ease in which hundreds of

bots can be setup in parallel. In fact, this type of massive

music hack (seems to) have been executed previously. The

music journalist William Bedell, for example describes how he

decided to “prototype a robot with an endless appetite for

music to see if Spotify could detect what it was doing”.

Performing his hack Bedell did not “encounter many Turing

tests … There wasn’t even a CAPTCHA or email verification

when creating accounts.” His conclusion was hence similar to

 12

ours: “The barriers to entry are clearly minimal.” In addition,

Bedell’s hack resembles a similar one made in 2013 by Peter

Filmore. As a payments security expert, Filmore wanted to test

the robustness of music-streaming services, and particularly if

they had any fraud detection systems in place—which it

turned out, they hadn’t.

Basically, the results from our experiments with the SpotiBot

engine, confirm Bedell’s and Filmore’s hacks. The defence

mechanisms used by Spotify to prevent our experiments have

been insufficient—or remained unknown. In fact, it has

proven more or less impossible in advance to predict how, or

when, different kind of fraud detection systems have been

activated (or not). It is worth stressing, however, that our bots

are more advanced than the ones Bedell and Filmore

programmed. They appear to have been ‘fixed programmed’

with the purpose to only play songs—not register and log any

outcomes, nor ‘interact’ with a web client or be able to

perform different tasks. Filmore’s bots were programmed in

Bash, a command-line interface in Linux—indeed scalable,

yet without any form of web interface interaction.

One of the core assumptions in our research project has been

to use bots as informants in multiple ways. As a consequence,

they have been designed as ‘programmable bots’ with the

ability to receive instructions to perform different task

 13

(depending on the purpose of the intervention or

experiment). Then again, even if our programmable bots were

arguably more sophisticated than Bedell’s and Filmore’s, an

important result from our SpotiBot interventions is still that a

huge number of deviations did interrupt the Spotify web

client, causing a number of our bots to stop playing. The

SpotiBot setup was based on an ideal bot usage flow, and all

deviations would in practice interrupt the client execution.

This is the main reason (we believe) why so many of our bots

did not perform the exact amount of repeated plays they were

programmed to perform. If truth be told, nearly all of our

bots—within the three rounds of experiments—stopped at

random occasions. Most frequently deviations were caused by

wrong behaviour by the bot, due to lack of knowledge of

client logic. A lot of the interrupts were, in addition, caused

by synchronization problems, where a bot tried to access parts

of the user interface not yet loaded (or not yet visible).

Still, even though the used framework, Selenium, had a good

support for these kind of errors, the software didn’t always

behave as we expected. To summon up our problems, the bots

we programmed to listen to the Spotify web client were not

only disobedient—they were inserted into a non-compliant

system full of latent errors. This led to a situation where much

more supervision and program correction than anticipated

was needed. In addition, lots of interrupts in our experiments

 14

occurred off hour, when the SpotiBot engine was without

supervision at Humlab. All in all, our bots weren’t really

‘battle-tested’ before our experiments began, and a lot of bugs

were constantly found that needed fixing.

Then again, even if we encountered a number of problems

and random deviations that interrupted client execution, the

general results from our SpotiBot setup do indicate that it is

possible to automatically play tracks for thousands of

repetitions that exceeds the royalty rule at Spotify. Listening

via the Spotify web client, our SpotiBots repeatedly passed the

Turing test. Admittedly, a more robust setup, with frequent

and repeated testing—based on increased knowledge around

client logic—would have made our bots less disobedient, and

way more successful in their listening habits. Still, since our

experiments do raise a number of research ethical issues, such

a resilient intervention infrastructure would all likely have

increased our manipulative hesitations. In the end, Abba

become a tiny fraction wealthier—and indeed we also made (a

very, very small amount of) money ourselves. Research can be

rewarding.

 15

