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Abstract

Even if digitized and born-digital audiovisual material today amounts to a steadily increasing body
of data to work with and research, such media modalities are still relatively poorly represented in
the field of DH. Streaming media is a case in point, and the purpose of this article is to provide
some findings from an ongoing audio (and music) research project, that deals with experiments,
interventions and the reverse engineering of Spotify’s algorithms, aggregation procedures, and
valuation strategies. One such research experiment, the SpotiBot intervention, was set up at
Humlab, Umea University. Via multiple bots running in parallel our idea was to examine if it is
possible to provoke — or even undermine — the Spotify business model (based on the so called
“30 second royalty rule”). Essentially, the experiment resembled a Turing test, where we asked
ourselves what happens when — not if — streaming bots approximate human listener behavior in
such a way that it becomes impossible to distinguish between a human and a machine.
Implemented in the Python programming language, and using a web Ul testing frameworks, our so
called SpotiBot engine automated the Spotify web client by simulating user interaction within the
web interface. The SpotiBot engine was instructed to play a single track repeatedly (both self-
produced music and Abba’s “Dancing Queen”), during less and more than 30 seconds, and with a
fixed repetition scheme running from 100 to n times (simultaneously with different Spotify Free ‘bot
accounts’). Our bots also logged all results. In short, our bots demonstrated the ability (at least
sometimes) to continuously play tracks, indicating that the Spotify business model can be
tampered with. Using a single virtual machine — hidden behind only one proxy IP — the results of
the intervention hence stipulate that it is possible to automatically play tracks for thousands of
repetitions that exceeds the royalty rule.

Introduction

Digitized and born-digital audiovisual material today amounts to a steadily increasing body of data to research — and do 1
research with [Briigger 2016]. Yet, other media modalities than text is still relatively poorly represented in the field of DH. As

is well known, the focus on the modality of text is (and has remained) strong; textual scholarship has been the discipline’s

core concern — from Busa’s concordances, to various text encoding initiatives and distant reading. Naturally, there are a
number of exceptions, especially regarding visual culture, and the way that images as datasets have been researched
within major frameworks as cultural analytics, or the abilities to algorithmically use computers to read and analyze a film’s
formal elements. Then again, most analytical DH-frameworks are derived from text, and it remains illustrative that as late as
2014, a special interest group focusing on “audiovisual material in digital humanities” was set up within ADHO. Its purpose

is to expand the role of audiovisual media within DH, and serve as “a venue for exchanging knowledge, expertise, methods

and tools by scholars who make use of audiovisual data” [AVinDH 2016].

Following John F. Barber’s claim, sound and music are especially “overlooked” within DH. The ‘“tilization of sound as a 2
methodology for information representation” has remained odd, or at best intriguing for digital humanities research [Barber
2016]. As of lately, however, there seems to be an increased scholarly DH-interest in the media modality of sound. As Erica
Robles-Anderson and Patrik Svensson has argued in their excellent piece on Powerpoint in Computational Culture, oral
presentation culture “is a powerful reminder that before Gutenberg much reading was listening”. [Robles-Anderson and
Svensson 2016]. Situated within a wider cultural analysis of audio collections, the first issue of the, Journal of Cultural
Analytics, featured an intriguing article by Tanya Clement and Stephen McLaughlin on how to measure applause [Clement
and McLaughlin 2016]. Clement has also published in this journal on the infrastructural analyses of sound collections within
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the so called, HiPSTAS-project [Clement 2016]. In addition, two of our colleagues at Humlab are also pursuing research
around sound, particularly regarding representational strategies of oral antiquity [Foka and Arvidsson 2016].

The purpose of this article is hence to make another contribution towards a greater variety of media modalities within DH- 3
research. Our article provide some initial findings from an ongoing research project that deals with various experiments,
interventions and the reverse engineering of Spotify’s algorithms, aggregation procedures, and valuation strategies. The
article focuses an experiment which we have called, the SpotiBot intervention. Via multiple bots running in parallel our idea
was, in short, to examine if it is possible to provoke — or even undermine — the Spotify business model (based on the so
called “30 second royalty rule”). The intervention resembled a Turing test, where we asked ourselves what happens when
— not if — streaming bots approximate human listener behavior in such a way that it becomes impossible to distinguish
between a human and a machine. As is well known, in the original Turing test the question was whether a human could
distinguish between a person and a machine [Turing 1950], whereas in our case Spotify’s algorithms were implicitly “asked”
to make this distinction. Basically, the SpotiBot interventions we conducted hence approximated a repetitive Turing test —
i.e. our bots interacted with the Spotify system, which (in one way or the other) tried to decide (via various unknown fraud
detection tools) if communication was human or machine based.

While most previous scholarship on Spotify has primarily focused the service role within the music industry, its alterations of 4
the digital music economy, or causing the eventual end of piracy [Wikstrém 2013] [Wikstrom and DeFilippi 2016] [Anderson
2015][Galuszka 2015] [Schwarz 2013], our research project on Spotify takes a software studies and DH approach towards
streaming media. In general, the key idea is to “follow music files” — rather than the people making, using, collecting or
listening to them — on their distributive journey through the Spotify streaming ecosystem [Fleischer and Snickars 2017].[1]
Basically, our scholarly purpose is thus to draw a more holistic picture by using Spotify as a lens to explore social, technical,
and economic processes associated with digital media distribution. Building on the tradition of “breaching experiments” in
ethnomethodology [Garfinkel 1967] — where “reactions” are caused by disturbing or even violating commonly accepted
rules or norms — our project has tried (in different ways) via repeated and modified interventions, to “break into” the hidden
infrastructures of digital music distribution. The interventionist approach in many ways resembles the simple way a postman
would follow the route of a parcel — from packaging to delivery.

The project also engages in reverse engineering Spotify’s algorithms and aggregation procedures, all in order to study 5
platform logics, including underlying norms and structures. As is well known, reverse engineering starts with the final
product (the music service Spotify in our case) and tries to take it apart — backwards, step by step “seeking clues as to why

it was put together in the way it was and how it fits into an overall architecture” [Gheel 2014, 10]. As an attempt to reveal the
procedures of culture and technology at work, reverse engineering can be linked to various forms of hacking practices.
Within studies of media reverse engineering has been used both by academic scholars [Friesinger and Herwig 2014] as

well as by tech journalist wanting to understand and analyze, for example, how Netflix’s sorting algorithms, vocabulary and
grammar work [Madrigal 2014].

On the one hand, we have within our project been interested in broadly studying different data patterns and media 6
processes at Spotify. On the other hand, we have also been keen on producing and obtaining research data, for example by
documenting (and tracing) Spotify’s history through constantly changing interfaces, or by tracking and archiving
advertisement flows (through debugging software as Fiddler or Ghostery). One point of departure is that Spotify resembles

a black boxed service, metaphorically as well as practically (at least from an academic media studies perspective). Another,

is that Spotify does not — to put it bluntly — share any data. Lack of access to data today confronts both media scholars,
(digital) humanists and social science researchers working within media studies. As a consequence, since Spotify user data

is not available, it has had to be acquired and compiled through other means in order to perform research — for example by
deploying bots as research informants [Eriksson 2018 (forthcoming)].

Bots as Informants

Bots appear to be human — which is why they are interesting. Bots give an impression of being able to act as a normal user 7
and/or person. The computer scientist Joseph Weizenbaum programmed what is often regarded as the first bot, ELIZA in

the 1960s, which could then (almost) pass for human. Today, the possibilities of such intelligent machines (or rather
software robots) have naturally increased [Boshmaf et al. 2011]. The most sophisticated contemporary bots react instantly

to public information, like the advanced algorithmic bots on the stock option market. They seems almost like disembodied
cyborgs, part human and part automaton.
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The bots we have programmed in our research project, however, are far from cyborgs. Our so called “BOT step-by-step 8
behavior-scheme” rather testifies to rudimentary tasks like: “BOT requests access to play.spotify.com; BOT enters
credentials; BOT submits credentials; Read current play position; BOT waits until search link is clickable; Enter search
string that identifies track to play”, etcetera. Still, our bots have proven to be very useful in order to explore, investigate,
mimic, and (even) subvert Spotify’s notions of usage and listening.

Under the computational hood of streaming music services all streams are equal, yet unlike at Apple Music every stream at 9
Spotify Free means (potentially) increased revenue from advertisers. The ad supported streaming model — giving away
music for free — has been controversial (especially in the U.S.). Yet, it has enabled Spotify to acquire a lot of customers,

and the company’s conversion rate (to Premium subscription) lies around 25 percent. Established in Sweden in 2006,
Spotify is today the dominant player in the streaming music market. With a user base now officially reaching more than 100
million — including 50 million paying subscribers — the music streaming service is today widely recognized as the solution

to problems caused by recent decades of digital disruption within the music and media industries. Spotify resembles Netflix,
YouTube and Apple Music as an epitome of streaming’s digital zeitgeist envisioned to shape our future, and has during the

last years emerged as the giant within the streaming music business. Even outcompeting Apple Music, Spotify’s market
share lies above 40 percent.

One success factor is arguably the ease by which a listening account can be set up at Spotify. For a number of years it was, 19
for example, extremely simple to sign in to Spotify — both for humans and bots. In endless discussions with record labels
(around rights management) Spotify took the stance that the continuous offering of a zero-price version with recurrent
advertisement (Spotify Free) would in the long run be the best solution as well as incentive to scale businesses and attract
global listeners. The importance of scaling and constantly adding new listeners might hence be one reason for Spotify’s low
security thresholds. There is no way of knowing how many fake accounts are registered among the service’s 100 million
‘users’. No CAPTCHA was for example needed (for our bots) when we performed the interventions and data capture for this
article (during late spring 2016), and obviously, one should in this context remember what the CAPTCHA abbreviation
originally stands for: “Completely Automated Public Turing test to tell Computers and Humans Apart”.

As is well known, a CAPTCHA is a program that protects websites against bots by generating a simple test that humans | 44
can pass but computer programs cannot. Given that different forms of click fraud — with automated bots pretending to be
consumers — has been an increasing problem within the online advertising industry, the lack of CAPTCHA's at Spotify did
trigger discussions on the community blog, for example as a way to stop bot fake listenings. In March 2016 user Jdwhicker
asked if there was an “issue with fraudulent plays going on. What if non-premium accounts had to pass a captcha instead of
listen to an advertisement every so often?” [Jdwhicker 2016]. As a possible consequence, during late summer of 2016,
Spotify started using CAPTCHAs as well as reCAPTCHAs (with image identification) — allegedly to better protect their
system.

Prior to these altered security measures, however, within our research project we used and deployed multiple bots to study 15
the explicit and implicit logics of the Spotify web client. We were even been able to automate account registration (for fast

bot setups). In one intervention, for instance, we deployed 288 bots, within 48 parallel Spotify sessions. Departing from the

idea that software is normative and regulatory — and, hence, that the streaming architecture of Spotify promotes and
materializes certain world views (and not others) — our bots have been programmed to explore (and to some extent
disrupt) the socio-technical protocols that endow music files with cultural meaning.

While setting up our different experiments and interventions, we have asked ourselves questions like: How are music files | 43
repeatedly recontextualized and rearranged by Spotify? How many steps does ‘raw’ audio data have to take before it can
become a streamed listening experience? How is the social life of a file imagined (and fostered) by this system? Another
fundamental question we have asked ourselves is what sounds are actually perceived as music (or not) according to
Spotify, and at various adjacent music aggregating services that regulate content appearing on streaming platforms [Morris
and Powers 2015]. Bots, in short cannot only “listen” to music; they can also produce content (in the form of “music”). Our
interventionist methods and explorations with uploading (more or less artificial) sounds and music have, for example,
resulted in different responses. The same music (or sounds) pass some aggregators — while others define it not to be
music content at all. When principles as to what is considered music vary, and when rejection criteria at music aggregators
turn more or less arbitrary — usually depending on whether users pay an aggregation fee or not — the line between music
and non-music, artist and machine, human and bot becomes increasingly blurred.

14
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In general, and arguably due to the fact that more music is usually better music at Spotify, the service seems likely to
include — rather than reject — various forms of (semi-)automated music [Snickars 2016]. Even though the service differs
from open platforms such as SoundCloud or YouTube, it is definitively ajar to (un)intentional and/or calculated musical
t(h)inkering, whether brought about by humans or bots. In short, what is labeled as music on Spotify is quite arbitrary —
machines can for example produce sounds and aggregate these. Then again, what is labeled as a listener on Spotify is also
random — our bots have as a matter of fact “listened” to quite a lot of music.

Another major research issue we have struggled with is the type of knowledge that can be gained (and gleaned) from 45
working with bots as informants. Are they to be trusted? Can they produce valid empirical data to be used in, for example,
scholarly publications? We do think so. Yet, as a kind of virtual informants our bots do not interactively and explicitly collect
information, rather they have been designed and set up to acquire and log certain data via the “actions” and different
functions they have been programmed to perform. Nearly all of our bots have been Spotify Free users. The setup has
involved a few similar steps. Firstly, bots are named (selenium44, selenium45, radon17, radion18 etcetera) and each given
certain specified (or random) characteristics (age, nationality, gender etcetera). Secondly, the bots — in the form of virtual
users — have been programmed to do specific tasks and hence act as research informants within the Spotify web client.
Within our research project these have varied depending on what scholarly issues or tasks we have been interested in.
Some bots have been used to massively play a single track repeatedly (as the many SpotiBots), others have been
programmed to test music recommendations based on gender (or age), and a third category have been deployed to
research so called “radio looping”, i.e the algorithmic song recommendations that follow automatically when (in our case) a
bot picks a song and starts a “radio channel” within the Spotify web client [Snickars 2017].

A typical “bot experiment description” (from the Spotify Radio intervention above) gives a hint as to the ways we have been  4g
trying to design our bots as active research informants. Usually our bot experiments have been iterative. Importantly, all

bots have been instructed to /og all their programmable actions and outcomes. Sometimes we have also recorded their
actions on video.

All radio looping bots sign into the web client and starts Spotify’s radio
function — based on the following specifications:

Botl (the obedient listener): Starts a radio station based on Abba’s “Dancing Queen”
and passively listens to the full loop. Run time 12 hours.

If the radio loop stops playing, the bot should be prepared to restart.
Bot2 (the skipper): Starts a radio station based on Abba’s “Dancing Queen”
and skips every fifth song. Run time 12 hours.

If the radio loop stops playing, the bot should be prepared to restart.
Bot3 (the liker): Starts a radio station based on Abba’s “Dancing Queen”
and likes every fifth song. Run time 12 hours.

If the radio loop stops playing, the bot should be prepared to restart.
Bot4 (the disliker): Starts a radio station based on Abba’s “Dancing Queen”
and dislikes every fifth song. Run time 12 hours.

If the radio loop stops playing, the bot should be prepared to restart.

It is sometimes said that when bots can pass for humans in a conversation — it will be a milestone in artificial intelligence. 17
“We live in a world of bots”, a recently published “botifesto” furthermore stated. Bots — in the form of sets of algorithms —
this botifesto argues, are both responsible for much of what happens at “the backend of the internet”, as well “as playing a
more active role in our everyday lives” [Woolley et al. 2016]. Automated systems’ increasing (in)ability to understand
humans, in short, point to the fact that bots are in vogue. It has even been suggested that the obsession with bots is driven
by a perceived fatigue with apps. Developers are hence looking for new ways to reach consumers — Facebook has, for
example, decided that various businesses are allowed to deliver automated customer support through chatbots within their
messaging application Messenger. Given that Spotify’s data exchanges with Facebook go back to 2011, it should hence
come as no surprise that in April 2017 Spotify announced that it was now “easier than ever to share and discover music
within Facebook Messenger with the new Spotify bot for Messenger with the all-new Chat Extensions feature” [Spotify Team
2017].

18
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Acting as informants our research bots can be perceived as a similar kind of virtual assistants. In a way they resemble the
digital assistants that Silicon Valley currently seems to favor — with the hope that Al-powered bot assistants as Siri, Alexa,
Cortana etcetera “will manage more and more of our digital activities”, as the hype goes [Newton 2016]. We are, naturally,
aware of that bots are today programmed for a variety of reasons. They send news articles to people (and write some of
these too); bots can be used to manipulate likes and followers; the bot-friendly design of Twitter differs from the regulated
one on Facebook (even if that is likely to change), and public service bots as for example @earthquakeBot — “I am a robot
that tweets about any earthquakes 5.0 or greater as they happen” — informs about important geological circumstances.

Even if some Twitter bots can search the Web for information (as well as post collected material at predetermined times), 19
bots are not usually programmed to act as informants per se — and especially not in a music environment. Naturally, there

are exceptions: so called political bots are for example increasingly used for ideological purposes to gather information,
change opinion, and enhance specific political objectives (for good, ill, or in-between). It has even been argued that bots
could become the “go-to mode for negative campaigning in the age of social media” [Woolley and Howard 2016]. In
addition, undercover bots have for years been deployed to act as “insiders” when security firms have tried to outsmart
hackers, literally working as semi-automatic informants. Bots have also increasingly started to get integrated into various
forms of cloud based team collaboration tools, as for example Slack. Such collaborative bots facilitate and assist
conversation. Still, the difference between bot users and regular users is of course that instead of interacting with a team via

one of Slack’s apps, bot users are controlled programmatically via a bot user token.

The bots described above are all sophisticated ones. Yet, given the increasing interest in bots and research around them o
[Woolley 2016] [Davis et al. 2016] [Abokhodair et al. 2015], we have refrained from simulating and building really human-like

bots. If a “social bot” is a computer algorithm that automatically “produces content and interacts with humans on social
media, trying to emulate and possibly alter their behavior” [Ferrara et al. 2016] — then our bots run on simpler versions of
code. Then again, it remains to be stressed that even if our bots are not the most sophisticated on the market (or in the
academy), experiments and interventions with them have been informed by profound considerations around bot culture and

its subsequent implications.

Essentially, the bots we have programmed are scripted algorithms that exhibit human-like behavior (in one way or the other) o4
when “listening” to music. Implemented in the Python programming language, and using a web Ul testing frameworks, our
SpotiBot engine has been able to automate the Spotify web client by simulating user interaction within the web interface. In
the implementation to conduct experiments with the Spotify web client we have used a system framework originally
designed for automated tests of web pages. Normally its purpose has been to validate correct behavior of software.
Consequently, our bots have been designed to program user activities and — importantly — log and record output of these
(i.e. customize scheduling, actions and logging of outcomes). Initially, our research project designed and developed a
rudimentary virtual machine (or run time engine) with the capability to execute about 15 high level machine instructions such
as “register_account”, “login”, “logout”’, “play_media”, “follow_artist” that targeted a streaming media service provider
(Spotify). The selected instruction set hence corresponded to the most common user interactions (in a web interface), and
the set has also included primitives for data capture (screenshots, playlists, video), as well as loops and conditional
execution. Using these instructions as buildings blocks, we have been able to design various user scenarios (case studies).
In short, given a sequence of instructions, the virtual machine can execute them in turn, until an end condition is reached.
The selected instruction set has thus been generic enough to, in theory, target basically any streaming service provider; that
is, the machine uses a streaming service driver and abstracts, as well as implements each instruction for targeted services
(Spotify, YouTube etcetera). Importantly, the machine also includes features for management of timed and repeated
executions (of a case study), a reporting system to view results of executions, as well as features for monitoring ongoing
executions. Finally, our virtual machine has used the popular Web testing framework, Selenium for access and control of
various web browsers.

SpotiBot — Results and Anomalies

One of the major controversies regarding the transition to streaming music platforms involves payouts to artists. The o9
sometimes heated discussion has, in short, been centered around the issue if streaming music will be able to generate a
sustainable income for musicians — or not. Statistics vary (and are often very hard to find), but estimations usually state
that revenue per played track range from $0,0003 to $0,0013 at streaming services as Spotify, Apple Music or Deezer.
Within the music industry this has led to considerable debate; Taylor Swift decided to remove her entire back catalogue from
Spotify, and lesser known artists have experimented with different music-hacks or pranks. These have ranged from the funk
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band Vulfpeck, and their conceptual album, “Sleepify” — containing five minutes and 16 seconds of pure silence; asking
fans to stream the album on repeat (while sleeping) — and hacks by the band Ohm & Sport and their application Eternify,
were for a (very) short time one could enter the name of a favorite artist and play songs on repeat for economic support in
31-second intervals — to the music spammer Matt Farley, who has personally released over 15,000 songs.

At Humlab (Umeé& University) we therefore set up an intervention — SpotiBot — with the purpose to determine if it was o3
possible to provoke, or to some extent undermine, the Spotify business model in a similar manner. Confidential agreements

and record label contracts with Spotify vary, but royalties are usually disbursed to artists (or more precisely, record labels)

once a song or track is registered as a play, which happens after 30 seconds. The SpotiBot engine — with the ability to run

a multiple of pre-programmed user bots — was hence instructed to play a single track repeatedly for more and less than 30
seconds, and sometimes simultaneously with different accounts. Tracks consisted both of self-produced music (from our
research project; the artist Fru Kost with the song “Avplock”) and Abba’s “Dancing Queen”. The fixed repetition scheme ran

from 100 to n times. The first round of bot experiments played Fru Kost, the second round played Abba, and the third round
played Abba again — but with increasing multiple bots at the same time. The SpotiBot engine was, in short, programmed to
automate the Spotify web client by simulating bot interaction within the interface in the following way:

1.1 SpotiBots plays Fru Kost “Avplock” for 25 seconds — repeat 100 times.

1.2 SpotiBots plays Fru Kost “Avplock” for 35 seconds — repeat 100 times.

1.3 SpotiBots plays Fru Kost “Avplock” for 35 seconds — repeat 1,000 times.

1.4 10 SpotiBots plays Fru Kost “Avplock” for 35 seconds — repeat n times ...
2.1 SpotiBots plays Abba “Dancing Queen” for 25 seconds — repeat 100 times.

2.2 SpotiBots plays Abba “Dancing Queen” for 35 seconds — repeat 100 times.

2.3 SpotiBots plays Abba “Dancing Queen” for 35 seconds — repeat 1,000 times.
3.1 10 SpotiBots plays Abba “Dancing Queen” for 25 seconds — repeat 100 times.
3.2 10 SpotiBots plays Abba “Dancing Queen” for 35 seconds — repeat 100 times.
3.3 100 SpotiBots plays Abba “Dancing Queen” for 35 seconds — repeat 100 times.
3.4 1,000 SpotiBots plays Abba “Dancing Queen” for 35 seconds — repeat n times ...

From a computational perspective the Spotify web client appeared as a black box; the logics that the Spotify application was o4
governed by was, for example, not known in advance, and the web page structure (in HTML) and client side scripting quite
complex. It was not doable within the experiment to gain a fuller understanding of the dialogue between the client and the
server. As a consequence, the development of the SpotiBot-experiments was (to some extent) based on ‘trial and error’ to

find out how the client behaved, what kind of data was sent from the server for different user actions etcetera. In addition,
since our bot experiments violated (some of) Spotify’s user agreements, a VPN connection was used that hid the running
clients behind a public proxy IP outside of the university network. The selected VPN proxy service was very cheap (used by
private consumers) and the stability of the connection was not entirely predictable.

Figure 1 and Figure 2 give a graphic estimation of some results from our experiments. In the first one, the SpotiBot engine o5
was able to play Fru Kost's track, repeatedly for 25 and 35 seconds. The bot “selenium57” for example played the track 229
times, and the “selenium_bot” as many as 1,141 times repeatedly — that is, after 35 seconds of “Avplock”, the bot started

the song again, and again, and again (i. e. more than eleven hundred times in a row). Similarly, in the second experiment,
“selenium_bot37” was able to repeatedly play Abba’s “Dancing Queen” for 35 seconds, at repeated intervals of 16 times,

208, 30, 1,141, 19, 20 times etcetera — to repeat: after 35 seconds of “Dancing Queen”, the bot started the song again, and
again, and again.
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Figure 1. Different SpotiBots playing Fru Kost “Avplock”, repeatedly for 25 or 35 seconds (never mind negative
results).
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Figure 2. “selenium_bot37” repeatedly plays Abba’s “Dancing Queen™ for 35 seconds — with recurrent and
(often) unknown Chrome browser errors (never mind negative results).

Apart from the possibility of actually being able to automatically (and repeatedly) play tracks on Spotify via bots, one
preliminary result indicate that there was no major difference between our bots playing artist like Fru Kost or Abba for 25 or
35 seconds. For the Spotify system, both artists were simply content. Our hypothesis was that playing tracks repeatedly for
25 seconds would (at least in theory) not be a problem, since such plays are not regarded as a registered play by the
Spotify system. This was also true. On one occasion the bot “selenium51” played Abba 550 repeated times for 25 seconds,
and on another the “selenium_bot” managed to play Fru Kost 100 repeated times for 25 seconds. Then again, we did not

discover any statistical difference if the same songs were played repeatedly during 35 seconds — even if they were then
registered as a play (and subsequent royalties were registered).

26

A second preliminary result was that our third experiment (using a large number of parallel bots to play Abba’s “Dancing

27
Queen”) could not really be executed on available hardware since it would have required investment in a lot of new
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machines. In a lighter setup, however, we used more than 20 bots running in parallel on two computers (virtual machines)
each interacting with a Spotify web client, repeatedly playing the same Abba track hundreds of times. Chart 3. gives a
graphic estimation of some of the results. In theory (if we had the financial abilities) we definitively believe it would be
possible to perform a massive “bot setup” with hundreds of clients running in parallel on a larger number of (possibly cloud
based) servers. Our simple experiments, in fact, clearly indicates the ease in which hundreds of bots can be setup in
parallel. In another experiment at Humlab we have, for example, set up 50 parallel bots using five virtual machines
(Windows 10 clients) on two computers running Microsoft Hyper-V server (in total ten virtual machines running five bots

each). It is easy to extrapolate this to hundreds, perhaps even thousands, of bots running in parallel with additional
hardware, or the use of leaner clients, cloud services or distributed computing efforts.

600
/\

400

1

4

5
52
52
52
5

4

F=x]

5
5

enium44

2005

selenium_bhot—"

selenium

selenium51
selenium
selenium51
selenium
~selenium
selenium
r
iur.
N\
selenium4
selenium54

selenium
selenium54

~

|
\
(

25 25 25 25 25 35 35 35 35 35 35 35 35

Figure 3. Multiple SpotiBots playing ABBA's “Dancing Queen”, simultaneously and repeatedly for 25 or 35
seconds (never mind negative results)

In fact, this type of massive music hack (seems to) have been executed previously. In an article on Motherboard.com, the
music journalist William Bedell, for example describes how he decided to “prototype a robot with an endless appetite for
music to see if Spotify could detect what it was doing”. His aim was to program a botnet on his “old laptop to generate $30 a
day in fake Spotify listens”™ — and he claims to have succeeded (even if there is no documentation of how he actually

coded his bots). Automated streaming, following Bedell, could thus be seen as “a lucrative heist involving robots emulating
humans”. Performing his hack he did not “encounter many Turing tests

28

... There wasn’t even a CAPTCHA or email
verification when creating accounts”. His conclusion was hence similar to ours: “The barriers to entry are clearly minimal.”
[Bedell 2015]

Bedell's hack resembles a similar one made in 2013 by Peter Filmore. As a payments security expert, Filmore wanted to
test the robustness of music-streaming services, and particularly if they had any fraud detection systems in place — which it
turned out, they hadn’t. Apparently, Fillmore made around a thousand dollar (he claims he was repeatedly playing his own

“music”) on the streaming service Rdio. One of his conclusions was that many music streaming services lacked automated
analysis regarding suspected fraudulent plays [Fiveash 2013].

29

Basically, the results from our experiments with the SpotiBot engine, confirm Bedell's and Filmore’s hacks. The defense
mechanisms used by Spotify to prevent our experiments have been insufficient — or remained unknown. In fact, it has
proven more or less impossible in advance to predict how, or when, different kind of fraud detection systems have been
activated (or not). It is worth stressing, however, that our bots are more advanced than the ones Bedell and Filmore
programmed. They appear to have been “fixed programmed” with the purpose to only play songs — not register and log any
outcomes, nor “interact” with a web client or be able to perform different tasks. Filmore’s bots were programmed in Bash, a
command-line interface in Linux — indeed scalable, yet without any form of web interface interaction.

30
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One of the core assumptions in our research project has been to use bots as informants in multiple ways. As a 34
consequence, they have been designed as “programmable bots” with the ability to receive instructions to perform different
task (depending on the purpose of the intervention or experiment). Then again, even if our programmable bots were
arguably more sophisticated than Bedell's and Filmore’s, an important result from our SpotiBot interventions is still that a
huge number of deviations did interrupt the Spotify web client, causing a number of our bots to stop playing. The SpotiBot
setup was based on an ideal bot usage flow, and all deviations would in practice interrupt the client execution. This is the
main reason (we believe) why so many of our bots did not perform the exact amount of repeated plays they were
programmed to perform. If truth be told, nearly all of our bots — within the three rounds of experiments — stopped at
random occasions. Most frequently deviations were caused by wrong behavior by the bot, due to lack of knowledge of client
logic. A lot of the interrupts were, in addition, caused by synchronization problems, where a bot tried to access parts of the
user interface not yet loaded (or not yet visible). A number of fixes for synchronization issues were, consequently, added to
various actions in order to compensate for waits or components/features to become available. Still, even though the used
framework, Selenium, had a good support for these kind of errors, the software didn’t always behave as we expected. Bot
‘clicking’ on a component not visible on the screen (that is, not within the scroll region) caused a number of errors with the
Chrome browser, for instance — something that would almost never happen for a real user since it would be impossible to
click outside a visible window area. Other problems were even harder to counteract, as for example network problems,
performance problems related to used hardware, or unexpected resource usage of the Spotify web clients.

Our setup used the same IP for all clients which also made it difficult to determine if interruptions were caused by the actual 35
setup, or by high volume originating from the same IP. Given more resources, it would however (in theory) be simple to use
multiple VPN proxies to distribute the net load over several IP’s. Some Spotify web client interrupts were also (most likely)
caused by network problems at the VPN service provider. The client VPN, in short, sometimes refused to reconnect
automatically after disconnects, which caused the SpotiBots to halt execution. Furthermore, a single virtual machine (under
Microsoft-V system) was used for all of our SpotiBot experiments. The VM ran in a shared environment with several other
virtual machine on a host machine running Microsoft Server 2012. Some interrupts of the experiments were caused by
inappropriate system configuration (automated software updates on both host server and client), system maintenance that
unexpectedly disconnected the VPN, a couple of power outages (badly configured UPS), as well as limited resources
(physical memory) assigned to the client virtual machine.

To sum up our problems, the bots we programmed to listen to the Spotify web client were not only disobedient — they were | 33
inserted into a non-compliant system full of latent errors. As a consequence, our SpotiBots stopped ‘listening” on
(in)numerous occasions. This led to a situation where much more supervision and program correction than anticipated was
needed. In addition, lots of interrupts in our experiments occurred off hour, when the SpotiBot engine was without
supervision at Humlab. It caused repeated restarts of interventions as well as delays in the execution. All in all, our bots
weren’t really ‘battle-tested’ before our experiments began, and a lot of bugs were constantly found that needed fixing.
Certain aspects of the bots logic also needed fine-tuning, most often related to waits for element to be present, visible,
clickable etcetera. Bots focused on the single task of playing music could have been designed in much simpler way like
Bedell’'s and Filmore’s bots. But we kept our design — mainly due to the data capture features that was a crucial part of the

“bot tasks”. In later experiments and interventions within our project, however, our bots have shown a high level of stability.

Conclusion

It has sometimes been argued that digitization “drives botification”, where the use of technology in “a realm of human 34
activity enables the creation of software to act in lieu of humans”. When bots become sufficiently sophisticated and
numerous, as well as embedded within the systems within which they operate, “these automated scripts can significantly
shape” human systems [Hwang et al. 2012]. These are considerations and reflections around the relationship between man
and machine worth thinking twice about. Within our project we have, for example, repeatedly asked ourselves if aggregated
“music” or “listeners” at Spotify “drive botification” as some have assumed — and if so: how do these automated scripts
feedback and reshape listening behaviors? We have basically, deployed our bots in a single manner — yet, naturally, a
more intricate situation would occur if one started looking at our bots collectively, and in a more systematic manner. That is,
not as isolated units of code, but as a kind of complex of bots, a botnet “acting” together within the Spotify environment,
shaping and tuning the system, evolving and transforming over time. The relation between listener and system in a
streaming music environment as Spotify is hence complicated — not the least due to the vast amount of available music.
Estimations vary, but roughly one-fifth of Spotify’s catalogue of some 30 million songs haven’t once been listened to by
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anyone (neither man, nor machine). In fact, the main reason for purchasing manipulated bot promotion in the form of fake
likes, followers or listeners are due to Spotify’s swelling back catalogue — of unheard music.

Working with bots as research informants, this article has suggested a set of concrete methodologies for performing 35
humanist inquiry on black-boxed media services (as Spotify) that today increasingly serve as key delivery mechanisms for
cultural materials. Essentially, we used uncomplicated bots in order to test a streaming music environment — again, one of
the used system frameworks (Selenium) originally deals with automations of web pages. Yet, even if we encountered a
number of problems within our SpotiBot intervention, our bots demonstrated an ability to continuously play tracks, indicating
that the Spotify business model can indeed be tampered with. One finding from our intervention is hence that that Spotify’s
algorithms (at least at the time of our experiment) could not tell human and bot listening apart. Later experiments within our
research project — for example around measurements of loop patterns and repetitiveness on Spotify Radio [Snickars 2017]
— has also gained a lot of insights from the ironing out of bugs within the SpotiBot intervention, which consequently has
made our bot engine much more stable. Even if we encountered a number of problems and random deviations that
interrupted client execution, the general results from our SpotiBot intervention do indicate that it is possible to automatically
play tracks for thousands of repetitions that exceeds the royalty rule at Spotify. Admittedly, a more robust setup, with
frequent and repeated testing — based on increased knowledge around client logic — would have made our bots less
disobedient, and more successful in their listening habits. Still, since our experiments do raise a number of research ethical
issues [Eriksson 2018 (forthcoming)], such a resilient intervention infrastructure would all likely have increased our
hesitations around musical manipulation. In the end, Abba become a tiny fraction wealthier — and we also made (a very,
very small amount of) money ourselves. Research can be rewarding.

Notes

[1] The research project, “Streaming Heritage. Following Files in Digital Music Distribution” is funded by the Swedish Research Council between
2014 and 2018. It involves system developers Roger Mahler and Johan von Boer (at Humlab, Umea University), as well as researchers Pelle
Snickars, Maria Eriksson, Anna Johansson and Rasmus Fleischer (at Umea University), and Patrick Vonderau (at Stockholm University). For more
information: http://streamingheritage.se/.
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